organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,4,5-Trihydroxy-N'-[(1-methyl-1*H*indol-2-yl)methylidene]benzohydrazide

Hamid Khaledi,^a Siti Munirah Saharin,^a Hapipah Mohd Ali,^a* Ward T. Robinson^a and Mahmood A. Abdulla^b

^aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^bDepartment of Molecular Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: hapipah@um.edu.my

Received 30 June 2009; accepted 10 July 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.044; wR factor = 0.127; data-to-parameter ratio = 18.4.

The structure of the title compound, $C_{17}H_{15}N_3O_4$, displays intermolecular $O-H\cdots N$ and $O-H\cdots O$ hydrogen bonding between adjacent molecules. Intramolecular $O-H\cdots O$ hydrogen bonds also occur. The molecule is essentially planar with a deviation of 0.090 (1) Å from the best plane running through the connected ring systems.

Related literature

For related compounds see: Khaledi et al. (2008a,b, 2009).

Experimental

a = 9.0839 (2) Å
b = 13.1684 (3) Å
c = 12.4414 (3) Å

$\beta = 104.2740 \ (10)^{\circ}$
V = 1442.30 (6) Å ³
Z = 4
Mo $K\alpha$ radiation

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.948, T_{\rm max} = 0.991$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ 221 parameters $wR(F^2) = 0.127$ H-atom parameters constrainedS = 0.99 $\Delta \rho_{max} = 0.63 \text{ e } \text{\AA}^{-3}$ 4070 reflections $\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$

 $\mu = 0.11 \text{ mm}^{-1}$ T = 100 K

 $R_{\rm int} = 0.019$

 $0.49 \times 0.16 \times 0.09 \text{ mm}$

10177 measured reflections

4070 independent reflections

3153 reflections with $I > 2\sigma(I)$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2O\cdots O4^{i}$	0.84	1.80	2.6119 (14)	164
$O1 - H1O \cdot \cdot \cdot N2^{i}$	0.84	2.06	2.7759 (15)	142
O3−H3 <i>O</i> ···O2 ⁱⁱ	0.84	2.12	2.8469 (14)	144
O1−H1 <i>O</i> ···O2	0.84	2.51	2.8570 (14)	106
O3−H3 <i>O</i> ···O2	0.84	2.31	2.7560 (14)	113

Symmetry codes: (i) $-x + \frac{3}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 2, -y, -z.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

The authors thank the University of Malaya for funding this study (FRGS grant No. FP009/2008 C).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2532).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA..
Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008a). Acta Cryst. E64, o2108.
Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008b). Acta Cryst. E64, o2481.
Khaledi, H., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o169.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

supplementary materials

Acta Cryst. (2009). E65, o1920 [doi:10.1107/81600536809027032]

3,4,5-Trihydroxy-N'-[(1-methyl-1H-indol-2-yl)methylidene]benzohydrazide

H. Khaledi, S. M. Saharin, H. Mohd Ali, W. T. Robinson and M. A. Abdulla

Experimental

A mixture of 1-Methylindole-2-carboxaldehyde (0.80 g, 5 mmol) and 3,4,5-trihydroxybenzoylhydrazine(0.92 g, 5 mmol) in the presence of acetic acid (1 ml) was heated in ethanol (70 ml) for 6 h. The solution was then cooled and filtered to remove the unreacted hydrazine. The filtrate was poured to water (400 ml), the solid product formed were filtered off, washed with diethyl ether, and dried in an oven. Suitable crystals for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

All Hydrogen atoms were placed at calculated positions (C—H 0.95–0.98, N—H 0.88 and O—H 0.84 Å), with U(H) set to 1.2–1.5 times $U_{eq}(C,N,O)$.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the title compound at 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.

3,4,5-Trihydroxy-N'-[(1-methyl-1H-indol-2- yl)methylidene]benzohydrazide

Crystal data	
C ₁₇ H ₁₅ N ₃ O ₄	$F_{000} = 680$
$M_r = 325.32$	$D_{\rm x} = 1.498 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 3739 reflections
<i>a</i> = 9.0839 (2) Å	$\theta = 2.3 - 30.4^{\circ}$
b = 13.1684 (3) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 12.4414 (3) Å	T = 100 K
$\beta = 104.2740 \ (10)^{\circ}$	Block, green
V = 1442.30 (6) Å ³	$0.49 \times 0.16 \times 0.09 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII CCD area-detector	
diffractometer	

4070 independent reflections

Radiation source: fine-focus sealed tube	3153 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.019$
T = 100 K	$\theta_{\text{max}} = 30.5^{\circ}$
ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -9 \rightarrow 12$
$T_{\min} = 0.948, T_{\max} = 0.991$	$k = -18 \rightarrow 18$
10177 measured reflections	$l = -17 \rightarrow 14$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.127$	$w = 1/[\sigma^2(F_o^2) + (0.0672P)^2 + 0.9156P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.99	$(\Delta/\sigma)_{\rm max} < 0.001$
4070 reflections	$\Delta \rho_{max} = 0.63 \text{ e} \text{ Å}^{-3}$
221 parameters	$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

methods Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.47487 (13)	0.36671 (9)	0.05923 (10)	0.0132 (2)
H1N	0.4655	0.3333	-0.0034	0.016*
N2	0.38051 (13)	0.44784 (9)	0.06479 (10)	0.0134 (2)
N3	0.06173 (13)	0.56577 (9)	-0.13005 (10)	0.0151 (2)
01	0.99391 (12)	0.12533 (8)	0.33141 (8)	0.0165 (2)
H1O	1.0219	0.0645	0.3313	0.025*
O2	0.98618 (11)	0.01716 (7)	0.13104 (8)	0.0149 (2)
H2O	0.9766	-0.0305	0.1737	0.022*
O3	0.77044 (12)	0.07206 (8)	-0.05744 (8)	0.0189 (2)
H3O	0.8473	0.0349	-0.0506	0.028*

O4	0.59664 (13)	0.38379 (8)	0.23996 (8)	0.0199 (2)
C1	0.04811 (18)	0.51469 (13)	-0.23489 (13)	0.0226 (3)
H1A	-0.0426	0.5393	-0.2887	0.034*
H1B	0.0393	0.4413	-0.2247	0.034*
H1C	0.1383	0.5288	-0.2623	0.034*
C2	-0.02892 (15)	0.64421 (11)	-0.11137 (12)	0.0155 (3)
C3	-0.15129 (16)	0.69271 (11)	-0.18421 (13)	0.0192 (3)
H3	-0.1834	0.6736	-0.2600	0.023*
C4	-0.22304 (17)	0.76936 (12)	-0.14091 (14)	0.0213 (3)
H4	-0.3059	0.8039	-0.1883	0.026*
C5	-0.17667 (17)	0.79760 (11)	-0.02853 (14)	0.0219 (3)
Н5	-0.2291	0.8505	-0.0016	0.026*
C6	-0.05636 (17)	0.74988 (11)	0.04323 (13)	0.0195 (3)
Н6	-0.0259	0.7692	0.1191	0.023*
C7	0.02010 (16)	0.67213 (11)	0.00177 (12)	0.0163 (3)
C8	0.14341 (16)	0.60759 (11)	0.05098 (12)	0.0162 (3)
H8	0.1997	0.6085	0.1263	0.019*
C9	0.16628 (15)	0.54349 (10)	-0.03077 (11)	0.0137 (3)
C10	0.27384 (15)	0.46201 (10)	-0.02389 (11)	0.0134 (3)
H10	0.2662	0.4180	-0.0856	0.016*
C11	0.58127 (15)	0.33924 (10)	0.15038 (11)	0.0129 (3)
C12	0.68091 (14)	0.25165 (10)	0.13972 (11)	0.0123 (3)
C13	0.78798 (15)	0.22437 (10)	0.23633 (11)	0.0132 (3)
H13	0.7917	0.2597	0.3035	0.016*
C14	0.88907 (15)	0.14590 (10)	0.23472 (11)	0.0128 (3)
C15	0.88441 (15)	0.09305 (10)	0.13689 (11)	0.0122 (2)
C16	0.77684 (15)	0.12083 (10)	0.04008 (11)	0.0135 (3)
C17	0.67475 (15)	0.19925 (10)	0.04105 (11)	0.0143 (3)
H17	0.6014	0.2171	-0.0249	0.017*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0140 (5)	0.0112 (5)	0.0140 (5)	0.0024 (4)	0.0029 (4)	-0.0013 (4)
N2	0.0120 (5)	0.0110 (5)	0.0173 (5)	0.0015 (4)	0.0040 (4)	0.0006 (4)
N3	0.0132 (5)	0.0141 (5)	0.0174 (6)	0.0019 (4)	0.0028 (4)	0.0011 (4)
01	0.0180 (5)	0.0172 (5)	0.0121 (4)	0.0047 (4)	-0.0006 (4)	0.0011 (4)
O2	0.0183 (5)	0.0122 (5)	0.0157 (5)	0.0049 (4)	0.0069 (4)	0.0039 (4)
O3	0.0196 (5)	0.0214 (5)	0.0139 (5)	0.0075 (4)	0.0010 (4)	-0.0046 (4)
O4	0.0232 (5)	0.0203 (5)	0.0151 (5)	0.0068 (4)	0.0027 (4)	-0.0035 (4)
C1	0.0219 (7)	0.0248 (8)	0.0192 (7)	0.0035 (6)	0.0014 (6)	-0.0027 (6)
C2	0.0135 (6)	0.0124 (6)	0.0219 (7)	0.0001 (5)	0.0066 (5)	0.0025 (5)
C3	0.0148 (6)	0.0182 (7)	0.0247 (7)	0.0009 (5)	0.0050 (5)	0.0049 (6)
C4	0.0151 (6)	0.0168 (7)	0.0325 (8)	0.0031 (5)	0.0070 (6)	0.0071 (6)
C5	0.0185 (7)	0.0134 (6)	0.0370 (9)	0.0020 (5)	0.0128 (6)	0.0013 (6)
C6	0.0193 (7)	0.0154 (7)	0.0263 (8)	-0.0008 (5)	0.0101 (6)	-0.0018 (5)
C7	0.0149 (6)	0.0129 (6)	0.0220 (7)	-0.0004 (5)	0.0068 (5)	0.0009 (5)
C8	0.0155 (6)	0.0142 (6)	0.0197 (7)	0.0003 (5)	0.0061 (5)	0.0004 (5)

supplementary materials

~~							
C9	0.0122 (6)	0.0123 (6)	0.0165 (6)	-0.0002 (5)	0.0034 (5)	0.0022 (5)	
C10	0.0125 (6)	0.0126 (6)	0.0155 (6)	-0.0008 (5)	0.0042 (5)	-0.0007 (5)	
C11	0.0134 (6)	0.0121 (6)	0.0135 (6)	0.0001 (5)	0.0042 (5)	0.0011 (5)	
C12	0.0122 (6)	0.0116 (6)	0.0131 (6)	0.0007 (4)	0.0031 (5)	0.0013 (5)	
C13	0.0148 (6)	0.0131 (6)	0.0120 (6)	0.0008 (5)	0.0034 (5)	-0.0004(5)	
C14	0.0131 (6)	0.0132 (6)	0.0117 (6)	0.0001 (5)	0.0022 (4)	0.0029 (5)	
C15	0.0120 (6)	0.0111 (6)	0.0142 (6)	0.0012 (4)	0.0042 (5)	0.0020 (5)	
C16	0.0147 (6)	0.0142 (6)	0.0120 (6)	0.0006 (5)	0.0038 (5)	-0.0016 (5)	
C17	0.0142 (6)	0.0147 (6)	0.0129 (6)	0.0025 (5)	0.0013 (5)	0.0007 (5)	
Geometric paran	neters (Å, °)						
N1-C11		1 3455 (17)	C4—	-C5	1	407 (2)	
N1—N2		1.3133(17) 13821(15)	C4—	-H4	0	9500	
N1—H1N		0.8800	C5—	-C6	1	380 (2)	
N2		1 2900 (17)	C5-	_H5	1.	9500	
N2-C10		1.2760(17)	C5—	-115	0.	405 (2)	
N3-C9		1.3700(13) 1 3912(17)	C6-	-C7 -H6	1.	9500	
N3—C3		1.3912(17) 1.4455(19)	C0—	-110 -C8	0.	A10 (2)	
N_{3} C_{14}		1.4455 (19)	C?—	-C8	1.	376(2)	
01		0.8400	C8—	-C9	1.	9500	
01 -110		1 3755 (16)	C8-	-118 	0.	<i>A</i> 39 <i>A</i> (19)	
02—C15		0.8400	C10	-C10 H10	1.4394 (19)		
02 - 1120		1 3613 (16)	C10-		0.	<i>4</i> 021 (18)	
03-110		0.8400	C12		1.	1 30/1 (18)	
03-04		1.2265(17)	C12-	C13	1.	2072(18)	
		1.2303 (17)	C12-		1.	2950 (18)	
$CI = \Pi IA$		0.9800	C13-		1.	0500	
CI—HIB		0.9800	C13-		0.	.9500	
CI-HIC		0.9800	C14-		1.	.3930 (18)	
$C_2 - C_3$		1.405 (2)	C15-		1.	.3995 (18)	
C2—C7		1.416 (2)	C16-		1.	.3900 (19)	
C3—C4		1.381 (2)	C1/-	—Н1/	0.	.9500	
С3—Н3		0.9500					
C11—N1—N2		119.41 (11)	С6—	-C7—C8	13	33.41 (14)	
C11—N1—H1N		120.3	C2—	-C7—C8	10	07.14 (12)	
N2—N1—H1N		120.3	С9—	-C8C7	10	07.18 (13)	
C10—N2—N1		114.41 (11)	С9—	-C8—H8	12	26.4	
C2—N3—C9		108.32 (12)	С7—	-C8—H8	12	26.4	
C2—N3—C1		125.46 (12)	C8—	-C9—N3	10	09.41 (12)	
C9—N3—C1		126.22 (12)	C8—	-C9C10	12	29.58 (13)	
C14—O1—H1O		109.5	N3—	-C9C10	12	20.98 (12)	
C15—O2—H2O		109.5	N2—	-C10C9	12	20.95 (13)	
C16—O3—H3O		109.5	N2—	-C10—H10	11	19.5	
N3—C1—H1A		109.5	С9—	-C10—H10	11	19.5	
N3—C1—H1B		109.5	04—	-C11—N1	12	22.01 (12)	
H1A—C1—H1B		109.5	04—	-C11-C12	12	20.71 (12)	
N3—C1—H1C		109.5	N1—	-C11-C12	11	17.28 (12)	
H1A—C1—H1C		109.5	C13-		11	19.91 (12)	
H1B—C1—H1C		109.5	C13-		11	15.60 (12)	

N3—C2—C3	130.13 (14)	C17—C12—C11	124.48 (12)
N3—C2—C7	107.95 (12)	C14—C13—C12	120.23 (12)
C3—C2—C7	121.92 (13)	C14—C13—H13	119.9
C4—C3—C2	117.12 (14)	C12—C13—H13	119.9
С4—С3—Н3	121.4	O1—C14—C13	117.13 (12)
С2—С3—Н3	121.4	O1—C14—C15	122.35 (12)
C3—C4—C5	121.76 (14)	C13—C14—C15	120.49 (12)
C3—C4—H4	119.1	O2—C15—C14	122.20 (12)
С5—С4—Н4	119.1	O2—C15—C16	118.70 (12)
C6—C5—C4	121.17 (14)	C14—C15—C16	119.04 (12)
С6—С5—Н5	119.4	O3—C16—C17	118.44 (12)
С4—С5—Н5	119.4	O3—C16—C15	120.73 (12)
C5—C6—C7	118.60 (15)	C17—C16—C15	120.83 (12)
С5—С6—Н6	120.7	C16—C17—C12	119.49 (12)
С7—С6—Н6	120.7	C16—C17—H17	120.3
C6—C7—C2	119.43 (13)	C12—C17—H17	120.3
C11—N1—N2—C10	-173.94 (12)	C8—C9—C10—N2	-9.1 (2)
C9—N3—C2—C3	-179.04 (14)	N3—C9—C10—N2	172.91 (13)
C1—N3—C2—C3	0.1 (2)	N2—N1—C11—O4	0.8 (2)
C9—N3—C2—C7	0.29 (15)	N2-N1-C11-C12	-179.57 (11)
C1—N3—C2—C7	179.39 (13)	O4-C11-C12-C13	0.73 (19)
N3—C2—C3—C4	179.14 (14)	N1-C11-C12-C13	-178.95 (12)
C7—C2—C3—C4	-0.1 (2)	O4—C11—C12—C17	-177.78 (13)
C2—C3—C4—C5	-0.4 (2)	N1-C11-C12-C17	2.5 (2)
C3—C4—C5—C6	0.3 (2)	C17-C12-C13-C14	0.5 (2)
C4—C5—C6—C7	0.2 (2)	C11-C12-C13-C14	-178.13 (12)
C5—C6—C7—C2	-0.7 (2)	C12-C13-C14-O1	177.99 (12)
C5—C6—C7—C8	-178.83 (15)	C12-C13-C14-C15	-0.4 (2)
N3—C2—C7—C6	-178.74 (13)	O1—C14—C15—O2	-0.6 (2)
C3—C2—C7—C6	0.7 (2)	C13—C14—C15—O2	177.66 (12)
N3—C2—C7—C8	-0.15 (16)	O1-C14-C15-C16	-177.82 (12)
C3—C2—C7—C8	179.24 (13)	C13-C14-C15-C16	0.4 (2)
C6—C7—C8—C9	178.27 (16)	O2-C15-C16-O3	1.6 (2)
C2—C7—C8—C9	-0.04 (16)	C14—C15—C16—O3	178.93 (12)
C7—C8—C9—N3	0.22 (16)	O2-C15-C16-C17	-177.94 (12)
C7—C8—C9—C10	-177.98 (14)	C14-C15-C16-C17	-0.6 (2)
C2—N3—C9—C8	-0.32 (16)	O3-C16-C17-C12	-178.85 (12)
C1—N3—C9—C8	-179.42 (13)	C15-C16-C17-C12	0.7 (2)
C2-N3-C9-C10	178.06 (12)	C13—C12—C17—C16	-0.6 (2)
C1—N3—C9—C10	-1.0 (2)	C11—C12—C17—C16	177.82 (13)
N1—N2—C10—C9	179.93 (12)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O2—H2O···O4 ⁱ	0.84	1.80	2.6119 (14)	164
O1—H1O···N2 ⁱ	0.84	2.06	2.7759 (15)	142
O3—H3O···O2 ⁱⁱ	0.84	2.12	2.8469 (14)	144

supplementary materials

O1—H1O…O2	0.84	2.51	2.8570 (14)	106
O3—H3O…O2	0.84	2.31	2.7560 (14)	113
Symmetry codes: (i) $-x+3/2$, $y-1/2$, $-z+1/2$; (ii) $-x+2$, <i>-y</i> , <i>-z</i> .			

Fig. 1